Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river

نویسندگان

  • C. J. Gleason
  • L. C. Smith
  • D. C. Finnegan
  • A. L. LeWinter
  • L. H Pitcher
  • V. W. Chu
چکیده

River systems in remote environments are often challenging to monitor and understand where traditional gauging apparatus are difficult to install or where safety concerns prohibit field measurements. In such cases, remote sensing, especially terrestrial time-lapse imaging platforms, offer a means to better understand these fluvial systems. One such environment is found at the proglacial Isortoq River in southwestern Greenland, a river with a constantly shifting floodplain and remote Arctic location that make gauging and in situ measurements all but impossible. In order to derive relevant hydraulic parameters for this river, two true color (RGB) cameras were installed in July 2011, and these cameras collected over 10 000 half hourly time-lapse images of the river by September of 2012. Existing approaches for extracting hydraulic parameters from RGB imagery require manual or supervised classification of images into water and non-water areas, a task that was impractical for the volume of data in this study. As such, automated image filters were developed that removed images with environmental obstacles (e.g., shadows, sun glint, snow) from the processing stream. Further image filtering was accomplished via a novel automated histogram similarity filtering process. This similarity filtering allowed successful (mean accuracy 79.6 %) supervised classification of filtered images from training data collected from just 10 % of those images. Effective width, a hydraulic parameter highly correlated with discharge in braided rivers, was extracted from these classified images, producing a hydrograph proxy for the Isortoq River between 2011 and 2012. This hydrograph proxy shows agreement with historic flooding observed in other parts of Greenland in July 2012 and offers promise that the imaging platform and processing methodology presented here will be useful for future monitoring studies of remote rivers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Water Extraction Indices Using Landsat Satellite Images (Case Study: Gamasiab River of Kermanshah)

Water is one of most important human needs for life. According to importance of subject, discussion of management and utilization of water resources has become one of the most important global issues. Remote sensing data are often used in water body extraction studies and type of remote sensing data used plays an important role in water body extraction. In this study, ability of Landsat satelli...

متن کامل

A Natural-Rule-Based-Connection (NRBC) Method for River Network Extraction from High-Resolution Imagery

This study proposed a natural-rule-based-connection (NRBC) method to connect river segments after water body detection from remotely sensed imagery. A complete river network is important for many hydrological applications. While water body detection methods using remote sensing are well-developed, less attention has been paid to connect discontinuous river segments and form a complete river net...

متن کامل

Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins

Analysis of 41 ERS 1 synthetic aperture radar images and simultaneous ground measurements of discharge for three large braided rivers indicates that the area of active flow on braided river floodplains is primarily a function of discharge. A power law correlation is found between satellite-derived effective width We and discharge Q, where We is the water surface area within a braided reach divi...

متن کامل

Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia

[1] Moderate Resolution Imaging Spectroradiometer (MODIS)–derived measurements of Lena River effective width (We) display a high predictive capacity (r 2 = 0.81, mean absolute error < 25%) to forecast downstream discharge conditions at Kusur station, some 8 d and 700 km later. Satellite-derived mean flow propagation speed (88 km d 1 or 1.01 m s ) compares well with that estimated from ground da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015